
Introduction to Formal Methods
(Flight Schedule Database Example)

by

Ricky W. Butler
Mail Stop 130

NASA Langley Research Center
Hampton, Virginia 23681-2199

email: R.W.Butler@nasa.gov
phone: (757) 864-6198
fax: (757) 864-4234

web: http://shemesh.larc.nasa.gov/fm/

Oct 9, 2012

Outline

• Common Techniques of Formal Methods

• Simple Database Example

• SATS Example

• Review/Intro to Emacs

This is the only lecture that will seek to motivate the role of theorem
proving in systems verification. The rest of the course will concentrate
on developing skills in using the PVS Theorem Prover

Formal Specification

• Formal Specification: Use of notations derived from formal logic to
describe

– assumptions about the world in which a system will operate

– requirements that the system is to achieve

– the intended behavior of the system

• Styles of Specification:

– Functions—express desired behavior or design descriptions

– Properties—enumeration of assumptions and requirements

– State-machines—express desired behavior or design descriptions

– . . .

Assumptions at one level become requirements at a lower level.

Functional Specification

a
x
y G(a,y)

F(a,x)
SYSTEM

F (a, x) =

√
a2 + x2

1 − x3

G(a, y) =

√

a2 + y4

1 + x2

Example of Property-Based Specification
(Fault-tolerant clock synchronization)

real time (t)

C
lo

ck
 T

im
e C_2(t) −− slow

C_1(t) −− fast

1. There is a δ such that if clocks Cp and Cq are non-faulty at time t,
then:

|Cp(t) − Cq(t)| < δ

where Cp(t) is clock p’s time at real time t
Cq(t) is clock q’s time at real time t
δ is the maximum clock skew

State-machine Specification

Id From Events To

1 CLEARED Active Vertical EXITS ALTHOLD ARMED

2 CLEARED Active Vertical ENTERS ALTHOLD CLEARED

3 ARMED ALTSEL Cond Capture CAPTURE

4 ACTIVE Active Vertical ENTERS PITCH OR VS ARMED

5 CAPTURE ALTSEL Cond Track TRACK

CLEARED ARMED

CAPTURE

ACTIVE ALTSEL_CondTrack

exit ALTHOLD

enter ALTHOLD

ALTSEL_Cond_Capture

enter
ALTHOLD

enter mode
other than
ALTHOLD

TRACK

The State Transition Function

Transition Function : inputs × state −→ [outputs × state]

next_state(ev, current_state, new_mode): ALTSEL_submodes =

COND

new_mode = ALTHOLD -> CLEARED,

new_mode = ALTSEL AND

ARMED?(ALTSEL(current_state)) AND

ALTSEL_Cond_Capture?(ev) -> CAPTURE,

new_mode = ALTSEL AND

ALTSEL_Cond_Track?(ev) -> TRACK,

new_mode /= ALTHOLD AND

new_mode /= ALTSEL -> ARMED

ELSE -> ALTSEL(current_state)

ENDCOND

Formal Proof Activities

Use of methods from formal logic to

1. analyze specifications for certain forms of consistency,
completeness

2. prove that specified behavior will satisfy the
requirements, given the assumptions

3. prove that a more detailed design implements a more
abstract one

(1) Formal Analysis of a Specification

a

y
x
b SYSTEM F(a,b,x,y)

F (a, b, x, y) = ax + by

SAFETY PROP: a2 + b2 = 1 ∧ x2 + y2 = 1 ⊃
F (a, b, x, y) ≤ 1

(1) Formal Analysis of a Specification (cont.)
(Operational Procedure Tables)

climb steep
climb

descend dive level

case 1 case 2 c1 c2

cur mode mode level, climb,
steep climb

* * dive * * descend

cur alt < target alt bool true * * * * * *
cur alt < targe alt - 1000 bool false true * false * * false
cur alt > target alt bool * * true false * * false
cur alt > target alt + 1000
AND cur alt > 5000

bool * * false false true * false

target alt - 100 <= cur alt
AND cur alt < target alt +
100

bool false * false false * true false

• CONSISTENCY: no two columns operational for any values of
the variables

• COMPLETENESS: For all values of variables one column is
operational

(2) Verification of Fault-Tolerant Algorithms

Top-level: Properties that algorithm should possess

Lower-level: Abstract description of the algorithm and un-
derlying assumptions

Prove: The algorithm satisfies desired properties given the
assumptions

(3) Design Verification

Top-level: Abstract description of system (and assump-
tions)

Lower-level: Detailed description of system (and assump-
tions)

Prove: The detailed system description has the same
behavior as the abstract description given the assumptions
and an abstraction function relating the two systems.

Hierarchical Verification

6 6

-

-

PROVE: Map(EXECi(Si(t))) = EXECi+1(Map(Si(t))

Map Map

(machine i + 1 execution)

EXECi+1

EXECi

(machine i execution)

Si+1(t) Si+1(t + 1)

Si(t + 1)Si(t)

• Another way to do this is through theory interpretations

– Prove that the axioms of the higher design specification become theorems

when translated into the terms of the lower design specification

– Equality requires special care

• Theory interpretations also provides a means to demonstrate (relative)

consistency of axiomatic specifications. Became available in PVS 3.0.

Illustration of Limitations

��AA

��AA

.....................
......

...
.................

.....
.......

................
..
.....

...
...
..

................
...
.........

..........

.................

....................

.....................................

.................

....................

Are the component models realistic/accurate?

• simulation

• testing

• peer review

• testing
• simulation
• peer review

physical devices

proof

proof

proof

high-level design

implementation

detailed design

requirements

functionality
intended

Recommended Reading

• Rushby, John: Formal Methods and Digital Systems Validation for
Airborne Systems. NASA Contractor Report 4551, Dec. 1993.
Available at http://shemesh.larc.nasa.gov/fm/fm-pubs-sri.html

• Rushby, John: Formal Methods and Their Role in Digital Systems
Validation for Airborne Systems. NASA Contractor Report 4673,
Aug. 1995. Available at
http://shemesh.larc.nasa.gov/fm/fm-pubs-sri.html

• NASA Office of Safety and Mission Assurance, Washington, DC.
Formal Methods Specification and Verification Guidebook for
Software and Computer Systems, Volume II: A Practitioner’s
Companion. Maybe available at
www.math.pku.edu.cn/teachers/zhangnx/fm/materials/NASAGB2.pdf

• Papers at http://pvs.csl.sri.com/documentation.shtml

• Papers http://shemesh.larc.nasa.gov/fm/

Flight Schedule Example

Requirements for an Airport Flight Schedule Database

• The flight schedule database shall store the scheduling information
associated with all departing and arriving flights. In particular the
database shall contain:

– departure time and gate number

– arrival time and gate number

– route (i.e. navigation way points)

for each arriving and departing flight.

• There shall be a way to retrieve the scheduling information given a
flight number.

• It shall be possible to add and delete flights from the database.

Formal Requirements Specification

• How do we represent the flight schedule database mathematically?

1. a set of ordered pairs of flight numbers and schedules. Adding
and deleting entries via set addition and deletion

2. function whose domain is all possible flight numbers and range is
all possible schedules. Adding and deleting entries via
modification of function values.

3. function whose domain is only flight numbers currently in
database and range is the schedules. Adding and deleting entries
via modification of the function domain and values.

Note: The choice between these is strongly influenced by the
verification system used.

Getting Started

Let’s start with approach 2:

function whose domain is all possible flight numbers and range is
all possible schedules. Adding and deleting entries via
modification of function values.

In traditional mathematical notation, we would write:

Let N = set of flight numbers
S = set of schedules

D : N −→ S

where D represents the database and S represents all of the schedule
information.

Note that the details have been abstracted away. This is one of the
most important steps in producing a good formal specification.

Specifying the Flight Schedule Database

D : N −→ S

How do we indicate that we do not have a flight schedule for all
possible flight numbers?

We declare a constant of type S, say “uo”, that indicates that there is no
flight scheduled for this flight number.

Now can define an empty database. In traditional notation, we would
write:

empty database : N −→ S
empty database(flt) ≡ uo

∀ flt ∈ N

Accessing an Entry

Let N = set of flight numbers
S = set of schedules
D = set of functions : N −→ S
∀d ∈ D and flt ∈ N.

find schedule : D × N −→ S
find schedule(d, flt) = d(flt)

Note that find schedule is a higher-order function since its first
argument is a function.

Specifying Adding/Deleting an Entry

Let N = set of flight numbers
S = set of schedules
D : N −→ S
uo ∈ S
D = set of functions : N −→ S
∀d ∈ D, ∀flt ∈ N, ∀sched ∈ S

add flight : D × N × S −→ D

add flight(d, flt, sched)(x) =





d(x) if x 6= flt
sched if x = flt

delete flight : D × N −→ D

delete flight(d, flt)(x) =





d(x) if x 6= flt
uo if x = flt

The WITH Notation

sin(x):

0 2 4 6 8 10 12

ppppppppppppppppppp
ppppppppppppppppp
pppppppppppppppppp
ppp

pppppppppppppppppp
pppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppp
pppppppppppppppp
ppppppppppppppppppp
pp

pppppppppppppppppp
pppppppppppppppppp
pppppppppppppp

sin WITH [7.4 := -0.60](x) =





-0.60 if x = 7.4
sin(x) otherwise

sin WITH [7.4 := -0.60](x)

0 2 4 6 8 10 12

ppppppppppppppppppp
ppppppppppppppppp
pppppppppppppppppp
ppp

pppppppppppppppppp
pppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppp
pppppppppppppppp
pppppppppppppppp
g

s

ppp
pppppppppppppppppp
pppppppppppppppppp
pppppppppppppp

Complete Spec (Omitting Function Signatures)

Let N = set of flight numbers

S = set of schedules

D = set of functions : N −→ S

∀d ∈ D, ∀flt ∈ N, ∀sched ∈ S

find schedule(d, flt) = d(flt)

add flight(d, flt, sched) = d WITH [flt := sched]

delete flight(d, flt) = d WITH [flt := uo]

Can test spec with some putative theorems:

LEMMA putative 1 : find schedule(add flight(d, flt, sched), flt)

= sched

LEMMA putative 2 : delete flight(add flight(d, flt, sched), flt) = d

Attempted Verification Of Putative 2 Reveals a Problem

Putative 2: delete flight(add flight(d, flt, sched), flt) = d
Proof:

delete flight(add flight(d, flt, sched), flt) =

delete flight(d WITH [flt := sched], flt) =

d WITH [flt := sched] WITH [flt := uo] =

d WITH [flt := uo] = ??

But there is no way to reach d, because

d WITH [flt := uo] 6= d

unless d(flt) = uo.

This is only true if the flt is currently not scheduled in the flight
database.

Verification Reveals Oversight

• We realize that we only want to add a flight with flight number flt,
if one is not already in the database.

• If flt is already in the database, we probably need the capability to
change it.

Thus, we modify add flight and create a new function
change flight:

Verification Reveals Oversight (Cont.)

Let N = set of flight numbers

S = set of schedules

D = set of functions : N −→ S

∀d ∈ D, ∀flt ∈ N, ∀sched ∈ S

scheduled?(d, flt) : boolean = d(flt) 6= uo

add flight(d, flt, sched) =

IF scheduled?(d, flt) THEN d

ELSE d WITH [flt := sched] ENDIF

change flight(d, flt, sched) =

IF scheduled?(d, flt) THEN d WITH [flt := sched]

ELSE d ENDIF

Putative 2 Proof After Correction

Putative 2: NOT scheduled?(d, flt) ⊃
delete flight(add flight(d, flt, sched), flt) = d

Proof:

delete flight(add flight(d, flt, sched), flt)

= delete flight(IF scheduled?(d, flt) THEN d

ELSE d WITH [flt := sched] ENDIF , flt)

= delete flight(d WITH [flt := sched], flt)

= d WITH [flt := sched] WITH [flt := uo]

= d WITH [flt := uo]

= d (because NOT scheduled?(d, flt) ⊃ d(flt) = uo)

A Minor Problem

To check our new function schedule? we postulate the following
putative theorem:

SchedAdd: LEMMA scheduled?(add flight(d, flt, sched), flt)

Proof:

scheduled?(add flight(d, flt, sched)) =

scheduled?(IF scheduled?(d, flt) THEN d

ELSE d WITH [flt := sched] ENDIF) =

IF d(flt) 6= uo THEN d(flt) 6= uo

ELSE d WITH [flt := sched](flt) 6= uo ENDIF =

d WITH [flt := sched](flt) 6= uo

sched 6= uo

which is not provable because nothing prevents sched = uo.

A Minor Problem Repaired

We then realize that our specification does not rule out the possibility
of assigning a “uo” schedule to a real flight

Let N = set of flight numbers

S = set of schedules

S∗ = set of schedules not including uo

D = set of functions : N −→ S

∀d ∈ D, ∀flt ∈ N, ∀sched ∈ S∗

find schedule : D × N −→ S

add flight : D × N × S∗ −→ D

change flight : D × N × S∗ −→ D

delete flight : D × N −→ D

This type of problem is often not manifested until when one attempts a
mechanical verification.

Another Example of a Putative Theorem

(∀i : flti 6= flt) ∧

find schedule(d0, flt) = sched ∧
d1 = add flight(d0, flt1, sched1) ∧
d2 = add flight(d1, flt2, sched2) ∧
. .

. .

. .

dn = add flight(dn−1, fltn, schedn)

⊃
find schedule(dn, flt) = sched

• Formal methods can establish that even in the presence of an
arbitrary number of operations a property holds.

• Testing can never establish this.

Some Observations

•Our specification is abstract. The functions are defined
over infinite domains.

• As one translates the requirements into mathematics,
many things that are usually left out of English
specifications are explicitly enumerated.

• The formal process exposes ambiguities and deficiencies
in the requirements.

• Putative theorem proving and scrutiny reveals
deficiencies in the formal specification.

PVS Spec

flight_sched3: THEORY

BEGIN

N : TYPE+ % flight numbers

S : TYPE+ % schedules

D : TYPE = [N -> S] % flight database

u0: S % unscheduled

S_good: TYPE = {sched: S | sched /= u0}

flt : VAR N

d : VAR D

sched : VAR S_good

emptydb(flt): S = u0

find_schedule(d, flt): S = d(flt)

scheduled?(d,flt): boolean = d(flt) /= u0

add_flight(d, flt, sched): D =

IF scheduled?(d,flt) THEN d

ELSE d WITH [flt := sched] ENDIF

change_flight(d, flt, sched): D =

IF scheduled?(d,flt) THEN d WITH [flt := sched]

ELSE d ENDIF

delete_flight(d, flt): D = d WITH [flt := u0]

putative2: LEMMA NOT scheduled?(d,flt) IMPLIES

delete_flight(add_flight(d,flt,sched),flt) = d

SchedAdd : LEMMA scheduled?(add_flight(d,flt,sched),flt)

END flight_sched3

Sequent Proof Style

The formula
P1 ∧ P2 ∧ P3 ⊃ Q1 ∨ Q2

can be presented as follows:

[-1] P1

[-2] P2

[-3] P3

|------

[1] Q1

[2] Q2

which is convenient because you can directly reference the individual
terms.

ALL of the following are equivalent

P1 ∧ P2 ∧ P3 ⊃ Q1 ∨ Q2

P1 ∧ P2 ∧ P3 ∧ NOT Q1 ⊃ Q2

P1 ∧ P2 ⊃ Q1 ∨ Q2 ∨ NOT P3

because
P ⊃ Q ≡ ¬P ∨ Q

PVS Does Not Like Leading NOTs To Hang Around

¬y < x ∧ ¬z < y ⊃ x <= z

|-------

{1} FORALL (x,y,z: real): NOT y < x AND NOT z < y IMPLIES x <= z

Rule? (SKOSIMP*)

|-------

{1} y!1 < x!1

{2} z!1 < y!1

{3} x!1 <= z!1

Rule? (ASSERT)

Q.E.D.

In your mind you translate {1} and {2} to a premise

[−1] x ≤ y ≤ z

Introduction to a PVS Proof

• Illustrative proof

putative2 :

|-------

{1} (FORALL (d: D, flt: N, sched: S_good):

NOT scheduled?(d, flt)

IMPLIES del_flight(add_flight(d, flt, sched), flt) = d)

Rule? (SKOSIMP*)

|-------

{1} scheduled?(d!1, flt!1)

{2} del_flight(add_flight(d!1, flt!1, sched!1), flt!1) = d!1

Rule? (EXPAND "del_flight")

|-------

[1] scheduled?(d!1, flt!1)

{2} add_flight(d!1, flt!1, sched!1) WITH [flt!1 := u0] = d!1

Rule? (EXPAND "add_flight")

|-------

[1] scheduled?(d!1, flt!1)

{2} IF scheduled?(d!1, flt!1) THEN d!1

ELSE d!1 WITH [flt!1 := sched!1] ENDIF

WITH [flt!1 := u0] = d!1

Rule? (ASSERT)

|-------

[1] scheduled?(d!1, flt!1)

{2} d!1 WITH [flt!1 := sched!1] WITH [flt!1 := u0] = d!1

Rule? (EXPAND "scheduled?")

|-------

{1} d!1(flt!1) /= u0

[2] d!1 WITH [flt!1 := sched!1] WITH [flt!1 := u0] = d!1

Rule? (APPLY-EXTENSIONALITY 2 :HIDE? T)

|-------

{1} d!1 WITH [flt!1 := sched!1] WITH [flt!1 := u0](x!1) = d!1(x!1)

[2] d!1(flt!1) /= u0

Rule? (LIFT-IF)

|-------

{1} IF flt!1 = x!1 THEN u0 = d!1(x!1)

ELSE IF flt!1 = x!1 THEN u0 = d!1(x!1)

ELSE d!1(x!1) = d!1(x!1)

ENDIF

ENDIF

[2] d!1(flt!1) /= u0

Rule? (GROUND)

Q.E.D.

Run time = 2.25 secs.

Real time = 4.29 secs.

Observations

•With formal methods a clear, unambiguous,
abstract specification can be constructed.

•Mechanized formal methods allows you can
CALCULATE (prove) whether the specification has
certain properties.

• These calculations can be done early in the
lifecycle on abstract descriptions.

• And they can cover ALL the cases

Emacs Essentials

C-g clear/reset the Emacs input buffer

C-x C-f load file into buffer (i.e. a window)

C-x C-s save contents of buffer into file

C-x b switch to another buffer

C-x C-b list all of your buffers

C-x 1 remove split screen: show only 1 buffer

C-k cut (kill) line

C-x k kill the buffer

C-y paste (yank) line

C-x u undo

C-d delete character

C-a move cursor to beginning of line

C-e move cursor to end of line

M-f move forward a word at a time

M-b move backword a word at a time

C-<space> set mark

C-w cut region between mark and cursor

